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Abstract. Particle filters, as a kind of non-linear/non-Gaussian estimation 
method, are suffered from two problems when applied to cases with many 
states dimensions, namely particle impoverishment and sample size 
dependency. Previous papers from the authors have proposed a novel particle 
filtering algorithm that incorporates Ant Colony Optimization (PF-ACO), to 
alleviate effect these problems. In this paper, we will provide a theoretical 
foundation of this new algorithm. A theorem that validates the PF-ACO 
introduces a smaller Kullback-Leibler Divergence (K-L divergence) between 
the proposal distribution and the optimal one when comparing to those 
produced by the generic PF is discussed.  
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1 Introduction 

Particle Filter (PF) is based on point mass particles that represent the probability 
densities of the solution space and it is widely used for solving non-linear and non-
Gaussian state estimation problems[1]. As an alternative method of Kalman Filter [2, 
3], it is widely used in applications under non-linear and non-Gaussian environments, 
The advantage of PF is that it can estimate any probability distribution [4] with an 
infinite number of samples. Although this optimal estimation is not available in real 
applications, it can still produce better results in the non-linear/non-Gaussian 
environment. However, particle impoverishment is inevitably induced due to the 
random particles prediction and re-sampling applied in generic PF [5], especially for 
problems that come with a huge number of state dimensions. After a number of 
iterations, if the generated particles are too far away from the likelihood distribution, 
their particle weights will approach zero and only a few particles are left which have 
significant weights, making other particles not efficient to produce accurate estimate 
estimation results. 

Therefore, there are other enhanced PF algorithms that employ different sampling 
strategies to minimize the impoverishment effect and these strategies include Binary 



Search[6], Systematic Resampling[7] and Residual Resampling[8], whose target are 
copying the important samples and discarding insignificant ones by different 
calculation and selection methods mainly based on their weights. However, at the 
meantime, the robustness of the filter is lost, because the diversity of particles is 
reduced by a certain extent [9]. In [10, 11], a metaheuristic method is introduced, in 
which the Ant Colony Optimization (ACO) is applied to optimize the particle 
distribution, which will be introduced in the next section. Validating the effectiveness 
of the PFACO based on the K-L divergence is included in Section 3 while discussion 
followed by conclusions, are presented in Section 4 and 5 respectively.    

2 Particle Filters 

2.1   Generic Particle Filters 

Particle filters are algorithms to perform recursive Bayesian estimation using Monte 
Carlo simulation and importance sampling, in which the posterior density is 
approximated by the relative density (weights) of particles observed in the state space. 
The posterior can be approximated by the weighted summation of every particle as 
follows: 

                   
0: 1: 0: 0:

1

( | ) ( )
N

i i
k k k k k

i

p x y w x x


 
                 (1) 

where the weighting value of particle i at time-step k, 
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 is updated according to Eq 
2. 
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It can be shown that as N  the approximation (Eq. 1) approaches the true 

posterior density 1:( | )k kp x y  [12].   

However, in problems that involve a huge number of dimensions, such as the multi-
robot SLAM problem, a large number of particles must be included in order to 
maintain an accurate estimation, the generic resampling method is not sufficient to 
avoid the impoverishment and size dependence problems. Consequently these 
problems will become very severe after a number of iterations, rendering a large 
portion of the particles negligible and reducing the accuracy of the estimation results. 

2.2   Ant Colony Optimization enhanced PF 

In order to optimize the re-sampling step of the generic particle filter, we incorporate 
ACO into the PF and utilize the ACO before the updating step [10, 11]. A single ant 
will replace the particle and they will move based on the choice of possible routes 
towards the local peak of the optimal proposal distribution function.  



The parameter τ(t), as shown in Eq. 3, is affected by every movement of the particle 
by the following equation: 
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where 0 1   is the pheromone evaporation rate, Δτ is a constant enhanced value if 
particle j is located between the starting particle and the end point.  

The heuristic function (β) is defined as the reciprocal of the distance between two 
particles (end points): 
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Finally, the optimization step runs iteratively based on a probability function 
obtained from Eq 5. It represents the probability of a particle i selecting particle j 
among N-1 particles as the moving direction.  
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The initial value of parameter α ( *i ) equal to the particle weight, as stated in Eq. 6.    

                               * *(0)i w 
                         (6) 

When the ACO algorithm converges and Pij approaches 1[13], it implies that the 
particle i re-locates at a closer proximity of particle j. A pseudo-program describing 
the PF-ACO algorithm is given below. 

 
Algorithm: The PFACO  Algorithm 

1 1 1 1[{ , } ] [{ , } , ]i i N i i N
k k i k k i kx w PFACO x w y     

(1) The initialization and prediction steps (these are same as the original PF 
algorithm) 

(2) ACO enhanced PF 
While the distance between particles’ measurement and the true measurement are not 
within a certain threshold and the iteration number does not exceed the maximum 
value 

 Choose particle i whose distance is within the threshold  
 Select the moving target based on the probability (Eq. 5) 
 Move towards the target with a constant velocity 
　 Update the parameters of the ACO (e.g. η, τ), and particle weights 

End While 
(3) Update Step & Resampling 



3   Theoretical Foundation of PF-ACO  

In this section, a theorem will be proposed together with its proof in order to elaborate 
how the PFACO can produce better solution when compared to the generic PF, which 
employs a transition function as the proposal distribution.  

Theorem: With the convergence nature of ACO, the PFACO can always achieve the 
optimal proposal distribution when the ACO converges to an optimal solution. 
 
Proof: In its generic form, a transition model is often employed as the predicted 
proposal distribution: 

1 1( | , ) ( | )k k k k k tranq x x y p x x 
                   (7) 

while the optimal distribution is defined by Eq. 8. 

1 1( | , ) ( | , )i i
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where the  1( | , )k k kq x x y in Eq. 8 represents the true distribution of the likelihood 

of state x with all previous states and observations are given. Since the probability is 
difficult to be integral, so we usually employ the transition function   

1( | )k k tranp x x  to approximate the true distribution. 

The second term 1( | , )i
k k kp x x y  in an application represents the probability 

that moving to state kx  in time k, given the samples in previous time step 1kx   and 

the measurement ky .  

In ideal cases, the proposal distribution should consider two kinds of noises: noises 
from the odometer and noise from the sensor. However, the generic transition model 
only incorporates the probability from motion detector noise. Consequently, the 
generic transition model can approximately equivalent to the optimal model only if 
either of following two conditions is satisfied. 

1) The odometer has no error in measurement, or 
2) the odometer noise has similar noise variance as the observation sensor. 

Nevertheless, the above two conditions are difficult to achieve in most of our 
experiments due to the different variances contributed by various sensors’ 
measurement errors. The observation sensors, such as laser and vision sensors, are 
getting more accurate, but this is not the case for an odometer. With different 
magnitude of variance levels, traditional transition model based on the odometer is 
not as suitable as it used to be, especially in experiments that include observation 
sensors and motion sensors.  

In order to prove ACO is able to solve this problem, Kullback–Leibler divergence 
(K-L divergence) is introduced. K-L divergence is a non-symmetric measure of the 
difference between two probability distributions. The approximation of K-L 

divergence [14] is generated by a set of sample data set: 1s , 2s
,… Ns

, based on the 
model density p(x), so 
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For the generic PF, the above K-L Divergence equals to 
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To evaluate the K-L Divergence, we take N Monte Carlo samples in state space for 

kx , and calculate their probability density given the condition of particle 1( )kx i  

and ky
.  

  Based on Eq. 10, it is trivial to derive that the ACO algorithm converges if and only 
if ( ) 1ijp k  , which indicates the necessary and sufficient conditions of ACO 

convergence is 0ijd   or 
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particles will be located around the peak of the mixture likelihood density 
function. 

Secondly, assuming that samples 1 2ˆ ˆ ˆ, ,..., nx x x  in the optimal proposal distribution 
are taken, in order to approach the optimal proposal distribution according to the 
definition of K-L Divergence and our Theorem 1, we will derive the relationship 
between the number of samples and the optimal distribution. If it is necessary to have 

M samples 1( , ,..., )k k k Mx x x    in order to generate N samples 1( , ,..., )k k k Nx x x     

in the continuous optimal proposal distribution, the number of samples needed to be 
considered is proportional to the second derivative of the optimal distribution 
according to the interpolation error[15], which can be illustrated by Fig. 1 and Eq. 11. 
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In Eq. 11, λ is a constant, indicating that number of M is proportional to the 
summation of the second derivatives of all samples in this interval.  

As shown in Fig. 1, k samples in the optimal Gaussian distribution are taken in 
uniform intervals, and within which, M samples are included in the original discrete 
distribution, that is, 1 2{ , , , }

ki kM M M M  . Similarly, samples in the proposal 

distribution are also separated into k intervals, that is 
1 2{ , , , }

ki kN N N N  . Given 

the convergence of Ant Colony Optimization algorithm [13], if a certain continuous 

optimal proposal distribution are divided into M samples, the sample ts  move 

closer to these M samples after the ACO improvement.  
Therefore, we can compare two K-L Divergence before and after the ACO 

improvement, from definition of Eq. 9 and 10,  
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and  
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Fig.1 Demonstration of the samples size M and N. 

Within [-1, 0], there are k=3 intervals. In the 1st and 2nd interval, M1=1 and M2=1 
samples may be sufficient to represent the distribution because all the second 

derivatives in this interval are nearly equal to zero ,and M3=3 sample are needed to 
re-construct the distribution.  

 
Let the sequence 

1 2
ˆ ˆ ˆ ˆ{ , , , }

ki kM M M M  denote the required particle number in 

each interval based on Equation 18. After sufficient iterations to achieve the optimal 
solution, if in an interval that the required particle number ˆ

k ki iM N , such as k = 1,2 

in Fig 1, it is trivial that 

                           ( || ) ( || )D p q D p q .                     (14) 
If within the intervals that the required particle number ˆ

k ki iM N , such as k = 3 as 

illustrated in Fig 1, then  
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The above convergence comes from the convergence of Ant Colony Optimization 
[13]. So within the intervals that the required particle number ˆ

k ki iM N , we get 

( || ) ( || )D p q D p q                       (16) 
Given a small number ε, with sufficient iterations, we can always achieve arbitrarily 
small K-L Divergence. Therefore, when we take summation in all intervals for K-L 

Divergence calculation, we can conclude that ( || ) ( || )D p q D p q .               � 

4   Discussion 

The above theorem qualitatively shows that the proposal distribution can ultimately 
achieve the optimal solution with Ant Colony Optimization. 

From the proof presented in Section 3, with reference from the formulation of the 
combinatorial optimization problem framework, the optimal proposal distribution 
problem being considered can be classified as a combinatorial optimization problem 
satisfying Eq. 17. 
 

       

1 1

1

1

1

( ( ( ( ) | ( ), ), ( | , ))

( ) 1

. .
( | ( )) ( ( ) | ( ))

( )
( ( ) | ( ), )

t t t t

M

i

t t t t
t

t t t

Min D q s i s i z p s s z

w i

s t
p z s i p s i s i

w i
q s i s i z



 











 




              (17) 
where D() is the K-L divergence between two distributions. 

Because the model is not known in advance in the problem, a heuristic method is 
considered to be one of the possible solutions in this paper. Directly speaking, we 
know that one important factor of tuning the proposal distribution, so that any similar 
metaheuristic can also be applied to solve this problem. 
 

5   Conclusions 

As a continuous study of the Ant Colony Improved Particle Filter (PFACO), a 
theoretical deduction of the improvement process is included in this paper. Our 
theorem validates that the PFACO optimizes the proposal distribution to generate a 
smaller Kullback–Leibler divergence value than that obtained from generic PF. From 
the theorem, we further discuss a framework to optimize this particle distribution 
based on combinatorial optimization. Using this framework, metaheurstic methods, 
e.g. ACO, or other methods can be applied to introduce better estimation results in 
non-linear as well as non-Gaussian engineering estimation problems.  
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